QR FACTORIZATIONS USING A RESTRICTED SET OF
ROTATIONS

DIANNE P. O'LEARY* AND STEPHEN BULLOCKT

Dedicated to Alan George on the occasion of his 60th birthday

Abstract. Any matrix A of dimension m x n (m > n) can be reduced to upper triangular form
by multiplying by a sequence of mn — n(n + 1)/2 appropriately chosen rotation matrices. In this
work, we address the question of whether such a factorization exists when the set of allowed rotation
planes is restricted. We introduce the rotation graph as a tool to devise elimination orderings in
QR factorizations. Properties of this graph characterize sets of rotation planes that are sufficient (or
sufficient under permutation) and identify rotation planes to add to complete a deficient set. We
also devise a constructive way to determine all feasible rotation sequences for performing the QR
factorization using a restricted set of rotation planes. We present applications to quantum circuit
design and parallel QR factorization.
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1. Introduction. The QR factorization of a matrix A of dimension m xn (m >
n) is a key tool in many matrix computations, including finding a basis for the range
or null space of a matrix and solving linear least squares problems. The unitary or
real orthogonal matrix @ is usually computed in one of three ways: Givens rotations,
Householder reflections, or Gram-Schmidt orthogonalization [4]. We focus in this
paper on Givens rotations.

The Givens-based decomposition is also an essential tool in quantum computing. A
quantum circuit is an implementation of the application of a unitary matrix to a
vector [2], and one way to design a circuit is to decompose the unitary matrix into a
product of rotations, since certain rotations are accomplished by the action of a single
quantum gate.

A Givens rotation G; is a matrix that is equal to the identity except that four entries
are modified: g;; = g;; = cos@ and g;; = —g;; = sinf for some angle 0 < § < 27.
Forming G;; A modifies only rows ¢ and j of a matrix, and an appropriate choice of 8
forces some entry in the jth row of the product to be zero.

The usual Givens QR algorithm reduces A to upper triangular form by applying
mn — n(n + 1)/2 Givens rotations in the order
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where Gg-“) is used to zero out the entry in row j and column k of the product.

There are many different rotation sequences that accomplish this same goal, however.
For example, for a 4 x 3 matrix, we could construct Q by applying the rotations
indicated above

1 1 1 2 2 3
cirNerRelylie-Ney e
or by applying this sequence of rotations:
1 1 1 2 2 3
einleirNeirNe e - Nevy
Both sequences produce an upper triangular R using the minimal number of rotations.

Not all Givens rotations are created equal, however, and performance can vary based
on the choices made:

e Commercial computers have memory hierarchies (involving registers, cache
levels, main memory, disks, etc.), so some pairs of rows are faster to access
than others. Thus, in order to obtain optimal performance, the choice of
rotations must depend on the layout of the matrix in memory.

e For parallel or grid computing with memory distributed among processors, the
choice of rotations should minimize the amount of processor communication,
and this again depends on how the matrix is distributed among processors.

e In quantum circuit design, m = n = 2P for some integer p, and the only
rotations that can be implemented in a single gate are those for which the
binary representations of i — 1 and j — 1 differ in a single bit. All other
rotations require a permutation of data before the rotation is applied and
thus should be avoided.

Therefore, it is important to determine whether a given set of rotation planes {(i, j)}
can be used to reduce a matrix to upper triangular form using a minimal number of
rotations. We will call such a set of rotation planes complete. In this paper we provide
a constructive answer to the following question:

Given a set of allowed rotation planes {(i, )}, is there an algorithm
to reduce any m X n matrix A to upper triangular form using mn —
n(n + 1)/2 rotations in those planes?

In other words, is the set of allowed rotation planes complete?

In the next section we answer this question, and then in Section 3 we illustrate the
application of our result.

2. Necessary and Sufficient Conditions for Completeness of a Set of
Rotations. The key to the solution of our problem is the rotation graph, an undi-
rected graph of m nodes with a connection between node i and node j if a rotation
is allowed in plane (4,5). A sample rotation graph is given in Figure 2.1. There are 4
edges and therefore 4 allowed rotation planes.

A feasible rotation sequence for step k of a triangularization will be a sequence of
m — k allowed rotation planes that can be used to reduce the elements in rows k + 1
through m of column & to zero.
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FiG. 2.1. A sample rotation graph.

One other definition is useful. Consider deleting the nodes of a tree one-by-one, with
the root deleted last, in any order that leaves a connected tree at each stage. From
such an admissible node ordering, the list of edges (i, 7) in the order in which node j
was deleted defines an admissible edge ordering. For example, form a tree from the
graph in Figure 2.1 by removing the edge (2,3) and rooting the graph at node 1.
Then the three admissible edge orderings are

(374)a (173)a (17 2);
(3,4),(1,2),(1,3);
(1,2),(3,4),(1,3).

Notice that these are exactly the three feasible rotation sequences (k = 1) for the
rotation planes corresponding to the three edges that we kept.

One interesting rotation graph is the star graph, with node m connected by an edge
to each other node. There are (m — 2)! admissible edge orderings on the resulting
tree rooted at m, corresponding to feasible rotation sequences that put m — 1 zeros in
column 1 of a matrix using rotations (m, j), j = 2,...m — 1 in any order, followed by
the rotation (1,m). It is easy to see that this set of m — 1 rotation planes is complete,
since it can be used to reduce any m x n (m > n) matrix to upper triangular form.

A second interesting rotation graph is the chain. There are constraints on the node
numbering for the chain, though. If the rotation graph is the chain 1-2-3, then we
can introduce zeros in the first column using the rotations (2,3) and (1,2), and then in
the second column using the rotation (2,3), so these rotation planes are complete. If
the rotation graph is the chain 3—1-2, then we can introduce zeros in the first column
using the rotations (1,3) and (1,2) in either order. But then there are no rotations
that can be used to zero the element in row 3, column 2 of the matrix, so this set of
rotation planes is not complete and are not sufficient for triangularization.

These examples lead us to understand that there is a correspondence between feasible
rotation sequences and admissible edge orderings of trees derived from the rotation
graph. We summarize this relation in the following result.

LEMMA 2.1. Suppose that an m-node rotation graph is connected after removal of
nodes 1 through k — 1.

a. Then there exists an admissible node ordering on the remaining m — k nodes.

b. An ordering of the edges of a spanning tree of the (m — k)-node graph, rooted at
node k, is admissible if and only if the corresponding rotation sequence at step k of
the reduction of a matriz to upper triangular form is feasible.

Proof. a. Create any spanning tree rooted at k. An admissible node ordering can be
3



created by a depth first search, deleting children before parents.

b. Suppose we have an admissible ordering of the edges of a spanning tree rooted at
node k, and consider the sequence of rotations corresponding to this ordering, where
we use rotation (¢,5) to eliminate the element in row j of the matrix when node j of
the graph is deleted. Consider the first edge (i, j) in the list. One of its nodes, say j,
the one further from k, does not appear later in the list, since it is being deleted. In
the matrix, we can zero the element in row j, knowing that none of our later rotations
will use this row and that either 4 = k or we will have a later opportunity to zero the
element in row ¢, when its turn for node deletion comes. We repeat this argument on
each of the m — k edges in our list through the last edge, which uses rotation (k,j)
to eliminate the last node other than k. Thus an admissible edge ordering induces a
feasible rotation sequence.

Conversely, if we have a feasible rotation sequence, then it defines an elimination
order for the nodes of the rotation graph, with k£ eliminated last. These rotations
form a spanning tree rooted at k by directing each edge toward the node that is not
eliminated. O

Now we can state the criterion for determining completeness of a set, of allowed rotation
planes, related to the notion of reachable sets [3, p.97].

THEOREM 2.2. A set of allowed rotation planes {(i,7)} with 1 <1,j < m is complete
if and only if for every node j there exists a path in the rotation graph from node m
to node j that passes through no node numbered lower than j.

Proof. Suppose we have a node j for which such a path does not exist. When nodes
1,...,j — 1 are eliminated, the remaining rotation graph will be disconnected. If we
try to do elimination in column j, we will be able at best to eliminate all but one of
the nonzeros in the disconnected piece, but there is no rotation that will eliminate
that last nonzero. Therefore, this set of allowed rotation planes is not complete.

Suppose these paths do exist. Then at each stage j (j = 1,...,n) of the elimination,
the rotation graph is connected and thus by Lemma 2.1, an admissible edge order-
ing and a feasible rotation sequence exists. Therefore the set of rotation planes is
complete. O

COROLLARY 2.3. A set of allowed rotation planes {(i,7)} with 1 < i,j5 < m is
complete if and only if the rotation graph as well as each of the graphs formed by
deleting nodes 1 through k, for k=1,...,n — 1 are connected.

Proof. This connectedness property is necessary and sufficient for the existence of
a path in the rotation graph from node m to node j that passes through no node
numbered lower than j. O

One obvious result is perhaps worth stating.

COROLLARY 2.4. The minimal number of allowed rotation planes that can be used to
reduce a general m X n matriz to upper triangular form is m — 1.

Proof. Since a connected graph on m nodes must have at least m — 1 edges, the
statement follows from Corollary 2.3. O

Thus the star graph and the chain graph with node numbers decreasing along each
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path from m give minimal sets of allowable rotation planes.

Finally, we generalize the concept of a complete set of rotations by allowing reorderings
of the rows and columns of the matrix to be triangularized. We will call a set of
allowed rotation planes permutation-complete if there exists a permutation matrix P
such that any m x m matrix A can be factored as PTAP = (PTQP)R where R
is upper triangular, P is a permutation matrix, and @ is the product of at most
m(m — 1)/2 rotations in the allowed rotation planes. (Equivalently, we could require
that an m x n matrix A (m > n) can be factored into a permutation of an upper
triangular matrix using mn — n(n + 1)/2 such rotations.)

Realizing that permutations of @ correspond to renumberings of the nodes of the
rotation graph, we characterize permutation-completeness in the next theorem.

THEOREM 2.5. A set of allowed rotation planes is permutation-complete if and only
if the rotation graph is connected.

Proof. Suppose that the rotation graph is connected. As in the proof of Lemma
2.1, choose a spanning tree of the graph and create an admissible node ordering by
depth-first search, deleting children before parents. With this numbering of the nodes
of the rotation graph, Theorem 2.2 tells us that the set of allowed rotation planes is
complete.

Conversely, if the rotation graph is not connected, there is no renumbering that creates
a path between nodes in the disjoint pieces, so we conclude from Theorem 2.2 that
this set of allowed rotation planes is not permutation-complete. O

3. Three Examples. We apply our algorithms to two problems in constructing
the sequence of gates to implement a quantum circuit and to QR factorization of a
matrix distributed among parallel processors. For ease of notation, we number the
rows and columns of an n X n matrix from 0 to n — 1, rather than from 1 to n, since
this makes the graph connectivity more clear.

3.1. Designing Quantum Circuits for 3 Qubits. Due to the axioms of quan-
tum mechanics, a data-state of a three quantum-bit quantum computer is described
by a vector in the Kronecker product space H; ® Hi ® Hi1, where H; is the one-qubit
state space spanned by vectors (or kets) |0) and |1). The practical implication of
this is that the only unitary matrices that correspond to physical processes local to a
single quantum-bit are matrices of the form V@ L ® I, LV &L, and L LRV,
where V is a unitary matrix and I is the 2 x 2 identity matrix, so we would like to
design our quantum circuits using rotation matrices drawn from this set.

Older papers on quantum circuit design (e.g., [2]) used the traditional choice of rota-
tions. For example, to reduce the first column of an 8 x 8 matrix to upper triangular
form, we apply the rotations in the order

0 0 0 0 0 0 0
G(()l)v G(()2) ’ G(()3) ’ G(()4)’ G(()S) ) Géei) ) G(()7) -
Only the rotations Go1, Go2, and G4 satisfy the constraint that the binary represen-
tations of the indices ¢ and j differ in a single bit.

There are 12 allowed rotation planes that satisfy the constraint, corresponding to the
12 edges of the rotation graph of Figure 3.1. Since this is a connected graph on the
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Fi1G. 3.1. The 3-qubit rotation graph (Section 3.1). Also, the allowed rotation planes for a
hypercube (Section 3.2)
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8 nodes, and since deleting nodes in numerical order preserves connectivity, this set
of rotation planes is complete. We can derive many elimination strategies that use
only the allowed rotations. For example, for £ = 1, forming the spanning tree by
breaking the edges (2,6) and (3,7) and processing highest numbered nodes first gives
the rotation sequence

0 0 0 0 0 0 0
G, Gig, G, Gl G, G, Y
and this construction can be extended to hypercube rotation graphs of any size.

One such strategy has been described by [6], who also exploits the fact that in quantum
circuits it can be advantageous to apply the same rotation to several pairs of rows if
it doesn’t destroy previously introduced zeroes.

3.2. Parallel QR Factorization. If a QR factorization is to be computed on
a hypercube multiprocessor, where the matrix is distributed as one row per proces-
sor, then the allowed rotation planes, the ones corresponding to communication only
among neighboring processors, are exactly those corresponding to the edges of a hy-
percube, as illustrated in Figure 3.1 for n = 8 processors.

If a block of rows is distributed on each processor, then the hypercube rotations are
sufficient to add to the rotations local to each processor in order to form a complete
set of rotation planes.

One such elimination strategy was developed by Chu and George [1]. In addition
to using only the allowed rotations, it is important to minimize the height of the
spanning tree and the degree of the nodes within it, since this determines the time
needed for the decomposition.

3.3. Designing Quantum Circuits for Qudits. The alkali of 8" Rb is being
investigated for its use in quantum computing. The 8 hyperfine levels of its ground
state can be used to encode quantum information as a qudit with 8 bits. (A qudit
possesses a data-state space spanned by |0),|1),---,|d — 1).) For physical reasons,
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Fi1G. 3.2. The qudit rotation graph.

only the 8 rotation planes corresponding to the edges of the graph of Figure 3.2 are
allowed [5].

If we are constrained to the ordering given in the graph, this set of rotation planes is
not complete; for example, there is no path from 5 to 7 that does not pass through
0. Therefore, in order to do the reduction, we must, for instance, add the ability
to do swaps, permutations of two rows in order to position them for the allowed
rotation planes. These permutations are themselves (trivial) rotations. Counting
permutations, 54 rotations are required to reduce a general matrix 8 x 8 matrix to
upper triangular form.

In this application, however, ordering is not important, so the critical property is
permutation-completeness. The rule (Corollary 2.3) is to delete the nodes in an order
that ensures that the remaining graph at each stage is connected. So, for example,
7 must be deleted before 0, and 3 must be deleted before 2. Once a node is deleted
from the cycle (0-5-2-4-1-6), then the ordering on the remaining nodes must be such
that we delete from one or both ends of the resulting chain of 5 nodes.

The minimum number of rotations required is 8%7/2 = 28. One ordering that requires
only 28 allowed rotations (gates) is 7,0,6,5,3,2,4,1, and here is one minimal feasible
rotation sequence:

e Step 1: Reduce column 7 to a single nonzero by the rotation sequence
Gi1. G4 G55, G5, G, G, G
e Step 2: Reduce column 0 to 2 nonzeros by the rotation sequence
0 0 0 0 0 0
GrifleiyNel el e N etr)
e Step 3: Reduce column 6 to 3 nonzeros by the rotation sequence
6 6 6 6 6
Ny RepileivNe s
e Step 4: Reduce column 5 to 4 nonzeros by the rotation sequence
5 5 5 5
grNcNe e
7



e Step 5: Reduce column 3 to 5 nonzeros by the rotation sequence
3 3 3
GiY, 657,65
e Step 6: Reduce column 2 to 6 nonzeros by the rotation sequence
2 2
G, G5
e Step 7: Reduce column 4 to 7 nonzeros by the rotation sequence
4
G\,

4. Conclusions. We have developed the rotation graph as a tool to devise elim-

ination orderings in Givens QR factorizations. Properties of this graph characterize
sets of rotation planes that are complete (or permutation-complete) and identify ro-
tation planes to add to complete an incomplete set. Through spanning trees, we also
have a constructive way to determine all feasible rotation sequences for performing the
QR factorization. This construction could be automated for quantum circuit design.
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